Price Forecasting and Optimal Operation of Wholesale Customers in a Competitive Electricity Market
نویسنده
چکیده
This thesis addresses two main issues: first, forecasting short-term electricity market prices; and second, the application of short-term electricity market price forecasts to operation planning of demand-side Bulk Electricity Market Customers (BEMCs). The Ontario electricity market is selected as the primary case market and its structure is studied in detail. A set of explanatory variable candidates is then selected accordingly, which may explain price behavior in this market. In the process of selecting the explanatory variable candidates, some important issues, such as direct or indirect effects of the variables on price behavior, availability of the variables before real-time, choice of appropriate forecasting horizon and market time-line, are taken into account. Price and demand in three neighboring electricity markets, namely, the New York, New England, and PJM electricity markets, are also considered among the explanatory variable candidates. Electricity market clearing prices in Ontario are calculated every five minutes. However, the hourly average of these 5-minute prices, referred to as the Hourly Ontario Energy Price (HOEP), applies to most Ontario market participants for financial settlements. Therefore, this thesis concentrates on forecasting the HOEP by employing various linear and non-linear modeling approaches. The multivariate Transfer Function (TF), the multivariate Dynamic Regression (DR), and the univariate Auto Regressive Integrated Moving Average (ARIMA) are the linear time series models examined. The non-linear approaches comprise the Multivariate Adaptive Regression Splines (MARS), and the Multi-Layer Perceptron (MLP) neural networks. Multivariate HOEP models are developed considering two forecasting horizons, i.e., 3 hours and 24 hours, taking into account the case market time-line and the ability of market participants to react to the generated forecasts. Univariate ARIMA models are also developed for day-ahead market prices in the three neighboring electricity markets. The developed models are used to generate price forecasts for low-demand, summer peak-demand, and winter peak-demand periods.
منابع مشابه
Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملInvestigating the Competition Status and the Impact of Market Power on Electricity Price: Case of Iran's Wholesale Electricity Market
Policy makers need to be acquainted with market competition statue. it would ease the decision making and restructuring of market. The aim of this study is to measure the competition of the wholesale electricity market and then investigate the impact of market power on wholesale electricity price during 2013 to 2017. The Result shows that market share of P.U.s in the wholesale electricity marke...
متن کاملInvestigating the Competition Status and the Impact of Market Power on Electricity Price: Case of Iran's Wholesale Electricity Market
Policy makers need to be acquainted with market competition statue. it would ease the decision making and restructuring of market. The aim of this study is to measure the competition of the wholesale electricity market and then investigate the impact of market power on wholesale electricity price during 2013 to 2017. The Result shows that market share of P.U.s in the wholesale electricity marke...
متن کاملA New Iterative Neural Based Method to Spot Price Forecasting
Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...
متن کاملStochastic Optimization of Demand Response Aggregators in Wholesale Electricity Markets
This paper proposes a stochastic framework for demand response (DR) aggregator to procure DR from customers and sell it to purchasers in the wholesale electricity market. The aggregator assigns fixed DR contracts with customers based on three different load reduction strategies. In the presented problem the uncertainty of market price is considered and the risk of aggregator participation is ma...
متن کامل